Low-rank Tensor Structure of Solutions to Elliptic Problems with Jumping Coefficients

نویسندگان

  • Sergey Dolgov
  • Boris N. Khoromskij
چکیده

Sergey Dolgov Moscow Institute of Physics and Technology, Russia Email: [email protected] Boris N. Khoromskij Max-Planck-Institute for Mathematics in Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany Email: [email protected] Ivan Oseledets Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina 8, 119991 Moscow, Russia [email protected] Eugene E. Tyrtyshnikov Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina 8, 119991 Moscow, Russia; Lomonosov Moscow State University, Russia; University of Siedlce, Poland (visiting professor) Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Structured Iterative Solution of Elliptic Problems with Jumping Coefficients

We study separability properties of solutions of elliptic equations with piecewise constant coefficients in R d , d ≥ 2. Besides that, we develop efficient tensor-structured preconditioner for the diffusion equation with variable coefficients. It is based only on rank structured decomposition of the tensor of reciprocal coefficient and on the decomposition of the inverse of the Laplacian operat...

متن کامل

Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs

We investigate the convergence rate of approximations by finite sums of rank-1 tensors of solutions of multi-parametric elliptic PDEs. Such PDEs arise, for example, in the parametric, deterministic reformulation of elliptic PDEs with random field inputs, based for example, on the M -term truncated Karhunen-Loève expansion. Our approach could be regarded as either a class of compressed approxima...

متن کامل

Adaptive Low-Rank Methods: Problems on Sobolev Spaces

This paper is concerned with the development and analysis of an iterative solver for high-dimensional second-order elliptic problems based on subspace-based low-rank tensor formats. Both the subspaces giving rise to low-rank approximations and corresponding sparse approximations of lower-dimensional tensor components are determined adaptively. A principal obstruction to a simultaneous control o...

متن کامل

Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems

We consider the solution of large-scale symmetric eigenvalue problems for which it is known that the eigenvectors admit a low-rank tensor approximation. Such problems arise, for example, from the discretization of high-dimensional elliptic PDE eigenvalue problems or in strongly correlated spin systems. Our methods are built on imposing low-rank (block) TT structure on the trace minimization cha...

متن کامل

Use of tensor formats in elliptic eigenvalue problems

We investigate approximations by finite sums of products of functions with separated variables to eigenfunctions of certain class of elliptic operators in higher dimensions, and especially conditions providing an exponential decrease of the error with respect to the number of terms. The results of the consistent use of tensor formats can be regarded as a base for a new class of rank truncated i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011